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Tracking Parkinson's disease (PD) symptom progression often uses the Unified 

Parkinson’s Disease Rating Scale (UPDRS), which requires the patient's 

presence in clinic, and time-consuming physical examinations by trained medical 

staff. Thus, symptom monitoring is costly and logistically inconvenient for 

patient and clinical staff alike, also hindering recruitment for future large-scale 

clinical trials. Here, for the first time, we demonstrate rapid, remote replication 

of UPDRS assessment with clinically useful accuracy (5% prediction error), 

using only simple, self-administered, and non-invasive speech tests. We 

characterize speech with signal processing algorithms, and statistically map these 

algorithms to UPDRS. We verify our findings on the largest database of PD 

speech in existence (~6,000 recordings from 42 PD patients, recruited to a six-

month, multi-centre trial). This supports the feasibility of frequent, remote and 

accurate UPDRS tracking. This technology could play a key part in 

telemonitoring frameworks that enable large-scale clinical trials into novel PD 

treatments. 
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Introduction 

 

 We are aware of neurological control through muscle movement and sensing so 

early in life that is easy to take it for granted. However, neurological disorders affect 

people profoundly and claim lives at an epidemic rate worldwide. Parkinson’s disease 

(PD) is the second most common neurodegenerative disorder after Alzheimer’s1, and 

it is estimated that more than one million people in North America alone are affected2. 

Rajput et al. report that incidence rates have been approximately constant for the last 

55 years, with 20/100,000 new cases every year3. A further estimated 20% of people 

with Parkinson’s (PWP) are never diagnosed4. Moreover, these statistics are expected 

to increase because worldwide the population is growing older5. In fact, all studies 

suggest age is the single most important risk factor for the onset of PD, which 

increases steeply after age 506. Although medication and surgical intervention can 

hold back the progression of the disease and alleviate some of the symptoms, there is 

no available cure7,8. Thus, early diagnosis is critical in order to improve the patient’s 

quality of life and prolong it9.  

 The etiology of PD is largely unknown, but the symptoms result from substantial 

dopaminergic neuron reduction, leading to dysfunction of the basal ganglia circuitry 

mediating motor and some cognitive abilities8. Parkinsonism exhibits similar PD-like 

symptoms, but these are caused by drugs, exposure to neurotoxins etc. The main 

symptoms of PD are tremor, rigidity and other general movement disorders. Of 

particular importance to this study, vocal impairment is also common10,11, with studies 

reporting 70-90% prevalence after the onset of the disease11,12,13. In addition, it may 

be one of the earliest indicators14,15 of the disease and 29% of patients consider it one 

of their greatest hindrances13. There is supporting evidence of degrading performance 
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in voice with PD progression14,16,17, with hypophonia (reduced voice volume) and 

dysphonia (breathiness, hoarseness or creakiness in the voice) typically preceding 

more generalized speech disorders11,12. 

 Management of PD typically involves the administration of physical examinations 

applying various empirical tests, including speech and voice tests, with a medical rater 

subjectively assessing the subject’s ability to perform a range of tasks. However, the 

necessity for the development of reliable, objective tools for assessing PD is 

manifested in the fact that current diagnosis is poor2 and autopsy studies are 

reportedly inaccurate18,19. 

 Physical test observations are mapped to a metric specifically designed to follow 

disease progress, typically the Unified Parkinson’s Disease Rating Scale (UPDRS), 

which reflects the presence and severity of symptoms (but does not measure their 

underlying causes). For untreated patients it spans across 0-176, with 0 representing 

healthy state and 176 total disability, and consists of three sections: (1) Mentation, 

Behavior and Mood; (2) Activities of daily living; (3) Motor. The motor UPDRS 

ranges from 0-108, with 0 denoting symptom free and 108 severe motor impairment, 

and encompasses tasks such as speech, facial expression, tremor and rigidity. Speech 

has two explicit headings, and ranges between 0-8 with 8 being unintelligible 

communication.  

 Noninvasive telemonitoring is an emerging option in general medical care, 

potentially affording reliable, cost-effective screening of PWP alleviating the burden 

of frequent and often inconvenient visits to the clinic. This also relieves national 

health systems from excessive additional workload, decreasing the cost and increasing 

the accuracy of clinical evaluation of the subject’s condition. 
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 The potential for telemonitoring of PD depends heavily on the design of simple 

tests that can be self-administered quickly and remotely. Since the recording of 

speech signals is noninvasive and can be readily integrated into telemedicine 

applications, such tests are good candidates in this regard. The use of sustained vowel 

phonations to assess the extent of vocal symptoms, where the patient is requested to 

hold the frequency of phonation steady for as long as possible, is common in general 

speech clinical practice20 and in PD monitoring21,22. This circumvents some of the 

confounding articulatory effects and linguistic components of running speech, i.e. the 

recording of standard phrases read aloud by the subject. In order to objectively 

characterize dysphonic symptoms, the recorded voice signals are analyzed by speech 

processing algorithms22,23. 

 Intel Corporation’s At-Home Testing Device (AHTD) is a novel telemonitoring 

system facilitating remote, Internet-enabled measurement of a range of PD-related 

motor impairment symptoms, recently described in detail24. It records both manual 

dexterity and speech tests; in this study we concentrate only on sustained vowel 

phonations. 

 Previous studies have focused on separating PWP from healthy controls14,22; we 

extend this concept to map the severity of voice symptoms to UPDRS. We also 

wanted to determine the feasibility of remote PD clinical trials on large scale voice 

data recorded in typical home acoustic environments, where previous studies have 

been limited to controlled acoustic environments and small numbers of recordings22. 

 Recent studies have raised the important topic of finding a statistical mapping 

between speech properties and UPDRS as an issue worthy of further investigation, but 

have not addressed it explicitly17,24. Here we present a method that first computes a 

range of classical and non-classical speech signal processing algorithms, which act as 
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features for statistical regression techniques. These features establish a relationship 

between speech signal properties and UPDRS. We show that this method leads to 

clinically useful UPDRS estimation, and demonstrate remote PD monitoring on a 

weekly basis, tracking UPDRS fluctuations for a six-month period. This can be a 

useful guide for clinical staff, following the progression of clinical PD symptoms on a 

regular basis, tracking the UPDRS that would be obtained by a subjective clinical 

rater. We envisage this method finding applications in future clinical trials involving 

the study of large populations remote from the clinic. 
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Results 

 

Overview and novel results of this study 

 

 Fig. 1 concisely summarizes the study with the recording, transmission, analysis 

of the speech signals, and the UPDRS estimation/tracking accuracy. We demonstrate 

UPDRS tracking of a typical patient throughout the six-month trial for the best linear 

method, iteratively re-weighted least squares (IRLS), and for classification and 

regression tree (CART). CART achieves the smallest prediction error, and tracks the 

linearly interpolated UPDRS more accurately. 

 

Data exploration and correlation analysis 

 

 Table 1 summarizes the dysphonia measures used in this study. All measures 

were significantly correlated (p<0.001) with linearly interpolated motor-UPDRS and 

total-UPDRS scores. Although statistically significant, none of the measures taken 

individually appears to have a large magnitude of correlation to either motor or total-

UPDRS. Following normalization to the range 0 to 1, the probability densities of each 

dysphonia measure are shown in Fig. 2a. The jitter, shimmer and NHR measures are 

distributed close to zero, whereas HNR, RPDE, DFA and PPE are more evenly 

distributed. Table 2 presents the Spearman rank-correlations between all the 

dysphonia measures. All measures were statistically significantly correlated 

(p<0.001). Fig. 2 (b, c) displays the normalized dysphonia measures against motor 

and total-UPDRS, providing an indication of their associated relationship to UPDRS. 
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Regression analysis 

 

 Table 3 presents the regression coefficient values for all dysphonia measures, for 

all three linear prediction methods. The obtained coefficients differed over cross-

validation runs for all three linear models, as evidenced by the large standard 

deviation of some of the coefficients. However, the testing mean absolute error 

(MAE) and its standard deviation across the 1,000-run cross-validation was relatively 

low (Supplementary Table 1), suggesting that these indicative coefficients are 

sufficient for useful UPDRS prediction. The training MAE for the linearly 

interpolated motor-UPDRS was 6.7 for least squares (LS) and IRLS, and 6.8 for least 

absolute shrinkage and selection operator (Lasso). The testing MAE was 6.7 for LS 

and IRLS, and 6.8 for Lasso. The CART method outperforms the linear predictors 

with a training MAE of 4.5 and testing MAE of 5.8. The training error for the linearly 

interpolated total-UPDRS was 8.5 for LS, 8.4 for IRLS, and 8.5 for Lasso. The testing 

error was 8.5 for LS, 8.4 for IRLS, and 8.6 for Lasso. CART performs better again, 

producing a training MAE of 6.0 and testing MAE of 7.5. Given that the maximum 

value of motor-UPDRS is 108, the testing error is 6.2% for IRLS and 5.3% for 

CART. Similarly, the maximum value of total-UPDRS is 176, and the testing error is 

4.8% for IRLS, and 4.2% for CART. IRLS is slightly superior compared to the linear 

predictors. However, CART outperforms it, displaying the smallest deviation from the 

interpolated score. 
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Model selection and validation 

 

 Supplementary Table 1 summarizes the subset selection of dysphonia measures, 

which were dictated by sweeping the Lasso algorithm regularization parameter λ, 

along with the out-of-sample MAE results for IRLS and CART. The pruning level for 

CART was set to minimize the MAE, following manual spot-checks. We noted that a 

difference in value of up to 20 for the pruning level did not produce significantly 

different results, given that the number of splits of the data was in excess of 5,000. 

Supplementary Fig. 2 displays the Bayesian Information Criterion (BIC) results 

aiming to determine the optimal subset which obtains the best trade-off between 

model complexity and prediction accuracy (similar results were obtained with the 

Akaike Information Criterion (AIC)). Both criteria agree on a subset containing six 

measures: MDVP: Jitter (Abs), MDVP: Shimmer, NHR, HNR, DFA, PPE for the 

CART method. This subset is used for the subsequent analysis. 

 The testing errors remain low and close to the training error, indicating that the 

model has achieved a reasonable estimate of the performance we might expect on 

novel data. The probability densities of the 1,000-runs 10-fold cross-validation out-of-

sample differences between the predicted and the linearly interpolated UPDRS values 

for all methods are seen in Supplementary Fig. 3. The difference between predicted 

and linearly interpolated UPDRS values is typically low.  
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Discussion 

 

 In this study, we have established a mapping between dysphonia measures and 

UPDRS. The association strength of these measures and (motor and total) UPDRS 

was explored, using three linear and one nonlinear regression methods. We have 

selected an optimally reduced subset of the measures producing a clinically useful 

model, where each measure in the subset extracts non-overlapping physiological 

characteristics of the speech signal. The comparatively small MAE is notable: the 

sustained vowel phonations convey sufficient information to predict UPDRS to 

clinically useful accuracy. It has been demonstrated that motor-UPDRS can be 

estimated within approximately 6 points (out of 108) and total-UPDRS within 7.5 

points (out of 176), predictions which are within 5-6% of the clinician’s observations. 

Furthermore, we showed the feasibility of tracking UPDRS changes in time (Fig. 1). 

Perhaps most importantly, the satisfactory reception of the patients themselves 

towards the AHTD and speech tests24 makes this a promising field for further 

experimentation. The 42 PWP in the present study were diagnosed within the 

previous five years at trial onset and displayed moderate symptoms (max motor-

UPDRS 41, max total-UPDRS 55), so it would be important to look at a more 

severely impaired group in the future. The satisfactory UPDRS estimation in 

moderate symptoms, which are difficult to detect, accentuates the potential of the 

dysphonia measures in PD assessment and supports the feasibility of successful 

UPDRS tracking in more severely affected patients. 

 Speech appears explicitly in two UPDRS categories (part II, activities of daily 

living section and part III, motor section). One could argue that speech is more 

strongly related to the motor section rather than daily living activities and mentation, 



 12

behavior and mood (part I), because the underlying etiology of dysphonic sustained 

phonations may be physiologically attributed to flawed muscle control, most likely 

caused by dopaminergic neuron reduction. This would imply that only motor-UPDRS 

estimation would be tractable. However, the results of this study indicate that total-

UPDRS estimation with clinically useful accuracy is plausible, suggesting that PD 

speech dysphonias could be at least partly related to mood as well. This makes it 

possible to suggest the generalization that the underlying causes of PD symptoms 

such as tremor and mood are manifested in impaired speech control. Stebbins et al.25 

have reported that motor-UPDRS can be explained by six distinct and clinically 

useful, underlying factors: speech, facial expression, balance and gait (factor I), rest 

tremor (factor II), rigidity (factor IV), right and left bradykinesia (factors III and V), 

and postural tremor (factor VI). They found relatively low correlations between the 

six factors, suggesting all contribute to accurate UPDRS estimation by capturing 

different aspects of PD symptoms. In terms of that study, we have used measures 

within factor I, extracting PD information properties only from speech. The implicit 

argument is that the dysphonia measures can adequately reveal PD symptom severity 

estimated by UPDRS, because they capture the effects of PD motor impairment 

manifested in speech production. We have demonstrated that predicting both motor 

and total-UPDRS scores to useful precision is possible, because the dysphonia 

measures aid in uncovering functional features of PD impairment. 

 Additionally, our findings support the argument that non-classical dysphonia 

measures convey important information for clinical speech signal processing. This is 

evidenced in the results of the Lasso algorithm, which selected non-standard 

dysphonia measures in all the performed tests (especially HNR, RPDE, DFA and 

PPE), and reflected in the optimal dysphonia measure subset selected by the BIC in 
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Supplementary Table 1. This suggests that these dysphonia measures contain 

significant information for tracking UPDRS. It also reinforces the conclusion reached 

in a previous study22, where these non-standard measures outperformed their classical 

counterparts in separating PWP from healthy controls. Nevertheless, the classical 

measures convey useful information which may not be captured by the non-classical 

techniques: a parsimonious combination of classical and non-classical is optimal. That 

is, different dysphonia measures appear to characterize different aspects of the PD 

symptoms represented in the speech signal, so that their combination in a regression 

method captures properties useful for clinical purposes. 

 Interestingly, the linear predictors performed very well, with the IRLS always 

presenting slightly better prediction results than LS and Lasso. This indicates that the 

tails of the error distributions of UPDRS around the regression line may depart from 

Gaussianity and outliers need to be eliminated from the Gaussian prediction error 

supposed by classical least squares methods. Still, its performance is not usefully 

superior to the standard linear LS method. However, CART always provides 

approximately 1-2 UPDRS points’ improvement in prediction performance over the 

linear methods.  

 Some of the dysphonia measures are highly correlated with each other (Table 2), 

which suggested the removal of those with insignificant contribution towards UPDRS 

estimation. This large correlation between measures manifests in the parameter values 

obtained through LS regression, where two highly correlated measures are allocated 

opposite signed, but similar magnitude, large value parameters. For example, the 

measures Shimmer APQ5 and MDVP: APQ have a correlation coefficient 0.96 and 

their parameters almost exactly cancel each other. To address this artifact, the Lasso 

algorithm offers a principled mathematical framework for reducing the number of 
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relevant input variables. Furthermore, recent theoretical work has shown that, 

remarkably, where there is a subset of input measures that contribute no additional 

information over others in the set, this algorithm is essentially equivalent to a brute 

force search through all possible combinations of measures to find the smallest 

combination that produces the minimum prediction error26. 

 The principle of parsimony suggests that given several different combinations of 

dysphonia measures that have equal prediction accuracy, preference should be given 

to the combination with the smallest number of measures. To account for estimation 

precision versus model complexity (number of dysphonia measures in the subset), we 

used the AIC and BIC values to determine the ‘optimal’ subset. The selected subset 

according to these criteria is given in bold in Supplementary Table 1. Both criteria 

suggest using the subset with the six measures: (MDVP: Jitter (Abs), MDVP: 

Shimmer, NHR, HNR, DFA, PPE) in combination with the CART method, which 

offers an attractive compromise between performance and complexity. That is, the 

selected dysphonia measures in this subset complement each other with minimal 

overlapping information, and at the same time capture practically the entire range of 

possible differentiating features of the speech signals useful in determining UPDRS 

values.  

 This selected subset and associated coefficients can be given a tentative 

physiological interpretation. Fundamental frequency variations (measured with 

absolute jitter) and variations in signal amplitude (shimmer), are well established 

methods, capturing symptoms manifested in vocal fold vibration and lung efficiency. 

NHR and HNR suggest that UPDRS is affected by increased noise, caused by 

turbulent airflow in the glottis, often resulting from incomplete closure of the vocal 

folds. This concept is further backed up by the inclusion of DFA. Finally PPE 
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indicates impaired pitch control which could be interpreted as deteriorating muscle 

co-ordination. This is a sign of flawed neuron action potential averaging, suggesting 

the reduction of dopaminergic neurons devoted to speech control. The remaining 

dysphonia measures were shown to convey insignificant additional information to be 

included in the model. 

 We believe these exploratory results could be of value in clinical trials, presenting 

clinical staff with a useful guide to clinical rater tracking of PD symptoms by UPDRS 

remotely, and at weekly intervals. This could be particularly useful in those cases 

where the patients are reluctant or unable to make frequent physical visits to the 

clinic. This may also be invaluable for future clinical trials of novel treatments which 

will require high-frequency, remote, and very large study populations. We remark that 

it is highly likely that combining these results with other PD symptom measures such 

as those obtained using the AHTD dexterity tests may well help to reduce the UPDRS 

prediction error and enhance the clinical value of such multimodal testing in 

telemedicine applications. 

 We stress again the fact that UPDRS is subjective, and the clinicians’ verdict on a 

patient’s score could vary. In the end, often the most relevant aspect of disease 

progression (or PD treatment) is the patient’s perception of symptoms, i.e. symptom 

self-rating. This study was confined to using dysphonia measures to predict the 

average clinical overview of the widely used PD metric, the UPDRS. Although the 

dysphonia measures have physiological interpretation, it is difficult to link self-

perception and physiology. In ongoing research work we focus our attempts to 

establish a more physiologically-based model, which will explain the data-driven 

findings in this study in terms of the relevant physiological changes that occur in PD. 
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Methods 

 

Subjects 

 

 This study makes use of the recordings described in Goetz et al.24, where 52 

subjects with idiopathic PD were recruited. The study was supervised by six US 

medical centers: Georgia Institute of Technology (7 subjects), National Institutes of 

Health (10 subjects), Oregon Health and Science University (14 subjects), Rush 

University Medical Center (11 subjects), Southern Illinois University (6 subjects) and 

University of California Los Angeles (4 subjects). All patients gave written informed 

consent. We disregarded data from 10 recruits – two that dropped out the study early, 

and a further eight due to insufficient performed tests. The selected subjects had at 

least 20 valid study sessions during the trial period. We used data from the 42 PWP 

(28 males) with diagnosis within the previous five years at trial onset (mean 72 ± 69, 

min. 1, max. 260, median 48 weeks since diagnosis), with an age range 64.4 ± 9.24, 

min. 36, max. 85, median 65 years. All subjects remained un-medicated for the six-

month duration of the study. UPDRS was assessed at baseline (onset of trial), and 

after three and six months, the scores were 20.84 ± 8.82, min. 5, max. 41, median 19.5 

points for motor UPDRS, and 28.44 ± 11.52, min. 7, max. 55, median 26.5 points for 

total UPDRS. 
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Data acquisition 

 

Fig. 1a displays graphically the data acquisition and UPDRS estimation procedure. 

The data is collected at the patient’s home, transmitted over the internet, and 

processed appropriately in the clinic to predict the UPDRS score. The data was 

collected using the Intel At-Home Testing Device (AHTD), which is a telemonitoring 

system designed to facilitate remote, Internet-enabled measurement of a variety of 

PD-related motor impairment symptoms. It contains a docking station for measuring 

tremor, paddles and pegboards for assessing upper body dexterity, a high-quality 

microphone headset for recording patient voice signals and a USB data stick to store 

test data. A LCD displays instructions for taking the tests. Typical audible prompts 

instruct the patient to undertake tasks to measure tremor, bradykinesia (slow 

movement), complex co-ordinated motor function, speech and voice. As part of a trial 

to test the effectiveness of the AHTD system in practice, PWP were recruited and 

trained to use the device. Subsequently, an AHTD was installed in their home and 

they performed tests on a weekly basis. Each patient specified a day and time of the 

week during which they had to complete the protocol, prompted with an automatic 

alarm reminder on the device. The collected data was encrypted and transmitted to a 

dedicated server automatically when the USB stick was inserted in a computer with 

internet connection. Further details of the AHTD apparatus and trial protocol can be 

found in the work of Goetz et al24. 

 The audio recordings are of two types: sustained phonations, and running speech 

tests in which the subject is instructed to describe static photographs displayed on the 

AHTD’s screen. They were recorded using a head-mounted microphone placed 5 cm 

from the patient’s lips. The AHTD software was devised such that an initial audible, 
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spoken instruction followed by a “beep” prompted the subject to begin phonation: an 

audio amplitude threshold detector triggered the capture of audio, and subsequently 

the capture was stopped one second after the detected signal amplitude dropped below 

that threshold, or 30 seconds of audio had been captured (whichever occurred sooner). 

The voice signals were recorded directly to the AHTD USB stick sampled at 24 KHz 

with 16 bit resolution. 

 In total, after initial screening, 5,923 sustained phonations of the vowel “ahhh…” 

were digitally processed using algorithms implemented in the Matlab software 

package. The patients were required to keep their frequency of phonation as steady as 

possible, for as long as possible. Six phonations were recorded each day on which the 

test was performed: four at comfortable pitch and loudness and two at twice the initial 

loudness (but without shouting). A typical sustained phonation speech signal appears 

in Supplementary Fig. 1, with Supplementary Fig. 1a exhibiting it from a 

macroscopic view over the duration of phonation, and Supplementary Fig. 1b 

exhibiting a zoomed in view. 

 

Feature extraction and statistical regression techniques 

 

 The aim of this study is to analyze the signal, extract features representing its 

characteristics, and map these features to UPDRS using regression methods. 

Ultimately, we want to mimic the UPDRS to useful precision with clinical importance 

from the speech signal. 
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Feature extraction 

 

 Algorithms aiming to characterize clinically relevant properties from speech 

signals can be broadly categorized into classical linear and non-classical, nonlinear 

methods, see22,27,28,29) and the references therein for a detailed overview. With the 

term linear we refer to a method where the output is proportional to a linear 

combination of the inputs; conversely, nonlinear methods have more general 

relationships between the inputs and the output. Here, we applied a range of classical, 

and more recently proposed, speech signal processing techniques (henceforth we will 

collectively refer to these as ‘dysphonia measures’) to all the 5,923 signals. Each of 

the dysphonia measures is aimed at extracting distinct characteristics of the speech 

signal, and produces a single number. Inevitably, some of them are highly correlated, 

a concept we discuss elsewhere in this paper. 

 The classical methods are largely based on linear signal processing techniques 

such as short-time autocorrelation, followed by ‘peak picking’ to estimate the 

fundamental frequency F0, which corresponds to the vibration frequency of the vocal 

folds (on average 120 Hz for men and 200 Hz for women). The pitch period (or 

simply pitch), is the reciprocal of F0. The voice amplitude also has clinical value and 

is determined as the difference between maximum and minimum values within a pitch 

period. Successive cycles are not exactly alike (see also Supplementary Fig. 1b); the 

terms jitter and shimmer are regularly used to describe the cycle to cycle variability in 

F0 and amplitude, respectively. Similarly, the harmonics to noise ratio (HNR) and 

noise to harmonics ratio (NHR) denote the signal-to-noise estimates. Please refer to27, 

30 for a more detailed description of these classical speech processing techniques. The 

software package Praat27 was used to calculate the classical algorithms: for 
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comparison, the corresponding algorithms in the well-used Kay Pentax Multi-

Dimensional Voice Program (MDVP)30 are prefixed by ‘MDVP’ in Table 1. 

 The recently proposed speech signal processing methods are Recurrence Period 

Density Entropy (RPDE), Detrended Fluctuation Analysis (DFA) and Pitch Period 

Entropy (PPE)22,29. The RPDE addresses the ability of the vocal folds to sustain 

simple vibration, quantifying the deviations from exact periodicity. It is determined 

from the entropy of the distribution of the signal recurrence periods, representing the 

uncertainty in the measurement of the exact period in the signal. Dysphonias such as 

hoarseness or creaky voice typically cause an increase in RPDE. DFA characterizes 

the extent of turbulent noise in the speech signal, quantifying the stochastic self-

similarity of the noise caused by turbulent air-flow in the vocal tract. Breathiness or 

other similar dysphonias caused by, e.g. incomplete vocal fold closure can increase 

the DFA value. Both methods have been shown to contain clinically valuable 

information regarding general voice disorders29, and PD-dysphonia in particular22. 

PPE measures the impaired control of stable pitch during sustained phonation22, a 

symptom common to PWP31. The novelty of this measure is that it uses a logarithmic 

pitch scale and is robust to confounding factors such as smooth vibrato which is 

present in healthy voices as well as dysphonic voices. It has been shown that this 

measure contributes significant information in separating healthy controls and PWP22. 

  

Data exploration and correlation analysis 

 

 In the AHTD trial, UPDRS values were obtained at baseline, three-month and six-

month trial periods, but the voice recordings were obtained at weekly intervals. 

Therefore, a straightforward piecewise linear interpolation was used to obtain weekly 
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UPDRS values to associate with each phonation. We interpolated both motor UPDRS 

and total UPDRS to assess the efficacy of the dysphonia measures for predicting both 

scores. The tacit assumption is that symptom severity did not fluctuate wildly within 

the three-month intervals over which the UPDRS were obtained. 

 Initially, we performed correlation analysis to identify the strength of association 

of dysphonia measures with the linearly interpolated UPDRS values. The data was 

non-normal, so we used non-parametric statistical tests. We computed p-values (at the 

95% level) of the null hypothesis having no linear correlation ρ, between each 

measure and UPDRS. Similarly, we calculated correlation coefficients between the 

dysphonia measures. We used the Spearman correlation coefficient to assess the 

strength of association between each measure and UPDRS, and between measures. 

The probability densities were computed with kernel density estimation with Gaussian 

kernels. 

 

Regression mapping of dysphonia measures to UPDRS  

 

 This preliminary correlation analysis suggests that, taken individually, the 

dysphonia measures are weakly correlated to UPDRS. However, individual 

correlations alone do not reveal the (potentially nonlinear) functional relationship 

between these measures combined together and the associated UPDRS. To find this 

relationship, statistical regression techniques have been proposed, the simplest of 

which is classical least-squares regression32. Our aim is to maximally exploit the 

information contained in the combined dysphonia measures to produce a predictor 

that maximizes the accuracy of UPDRS prediction. We used three linear and one 

nonlinear regression method to map the dysphonia measures to interpolated UPDRS 
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values, and compared their predictive performance32. Linear regression methods 

assume that the regression function f(x)=y, which maps the dysphonia measures 

x=(x1,…, xM) (M is the number of inputs) to the UPDRS output y, is linear in the 

inputs. It can be expressed as 0
1

( )
M

j j
j

f b x b
=

= +∑x , with the use of the bias term b0 

being optional, i.e. b0 = 0 is quite common (this study does not use a bias term). The 

aim is to determine the coefficients (or parameters) b, given a large number of input 

values x and output values f(x)=y, that minimizes the error in the predictions of 

UPDRS over the whole data set. The linear techniques used were classical least 

squares (LS), iteratively re-weighted least squares (IRLS), and least absolute 

shrinkage and selection operator (Lasso). We describe these techniques next. 

 LS determines the coefficients b that minimize the residual sum of squares 

between the actual (measured) UPDRS and the predicted UPDRS: 
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2

2

1 1 1
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where 1( ,..., )i i ijx x=x  is a vector of input measurements giving rise to the measured 

quantity yi, for each ith case and N is the number of observations. The statistical 

assumption underlying LS is that the residuals (the difference between the actual and 

predicted UPDRS) are independent and identically distributed Gaussian random 

variables, which may not always be a valid assertion, and this can lead to poor 

estimates of the parameters. Thus, to mitigate any large deviations from Gaussianity, 

our proposed IRLS method effectively reduces the influence of values distant from 

the main bulk of the data (outliers) by making iterative LS predictions that reweight 

outliers at each step. This robust estimator is computed using the following algorithm: 
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1) Determine the residuals: 
1 1

N M

i ij j
i j

y x b
= =

= −∑ ∑r  

2) Determine the weights w using r: ( )( )exp 2 / max( )
T

= − ⋅w r r  

3) Solve the least squares problem using w: 
2

1 1

ˆ arg min
N M

i i ij j
i j

w y x b
= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑

b
b  

4) Repeat from the 1st step, for a pre-specified number of iterations (we used 100). 

 

In the first iteration, the coefficients b are determined using the LS method. 

  

 A problem often encountered in such regression methods when using a large 

number of input variables (16 in this case) is the curse of dimensionality: fewer input 

variables could potentially lead to a simpler model with more accurate prediction. 

Research has shown that many of the dysphonia measures are highly correlated22 and 

this finding is confirmed in this study (see Table 2), so we can assume that taken 

together, highly correlated measures contribute little additional information for 

UPDRS prediction. Following the general principle of parsimony, we would like to 

reduce the number of measures in the analysis and still obtain accurate UPDRS 

prediction. 

 Little et al. used pre-filtering to reduce the number of dysphonia measures22: this 

method combines pairs of measures and computes correlation coefficients; when the 

correlation is above a pre-defined high threshold, one of the pair of measures is 

removed. The process continues until no more coefficients can be eliminated. 

Although viable, it is less principled than shrinkage methods such as the Lasso, which 

also offers a mathematical framework enhancing the physiological interpretability of 

the resulting regression coefficients33. The Lasso has the desirable characteristic of 
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simultaneously minimizing the prediction error whilst producing some coefficients 

that are effectively zero (reducing the number of relevant input variables) by adjusting 

a shrinkage parameter. The algorithm selects the best, smallest subset of variables for 

the given shrinkage parameter. Decreasing this parameter value causes additional 

coefficients to shrink towards zero, further reducing the number of relevant input 

variables. Then it becomes a matter of experimentation to find the optimal 

compromise between reducing the number of relevant input measures and minimizing 

the error in the UPDRS prediction. Specifically, the Lasso induces the sum of absolute 

values penalty: 

2

1 1 1

ˆ arg min  subject to 
N M M

Lasso i ij j j
i j j

y x b b t
= = =

⎛ ⎞
= − ≤⎜ ⎟

⎝ ⎠
∑ ∑ ∑

b
b  

 

where t is the shrinkage parameter, and the constraint 
1

M

j
j

b t
=

≤∑  can be seen as 

imposing the penalty 
1

M

j
j

λ b
=
∑ to the residual sum of squares, which yields:  

2

1 1 1

ˆ arg min
N M M

Lasso i ij j j
b i j j

y x b λ b
= = =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∑ ∑b  

 

 Other penalties are possible, including the sum of squares of coefficients b (ridge 

regression), but it can be shown that the sum of absolute values penalty leads to many 

coefficients which are almost exactly zero, when the problem is underdetermined due 

to highly redundant inputs, as in this case26. In practical terms, this also enhances the 

interpretability of the model.  

 It may well be the case that the dysphonia measures do not combine linearly to 

predict the UPDRS. Thus, nonlinear regression may be required, where the prediction 
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function f(x) is a nonlinear combination of the inputs x. To test this idea, we used the 

classification and regression tree (CART) method, which is a conceptually simple 

nonlinear method that often provides excellent regression results32. The key idea 

behind CART is in finding the best split of the input variables, and partitioning the 

ranges of these variables into two sub-regions. This partitioning process is repeated on 

each of the resulting sub-regions, recursively partitioning the input variables into 

smaller and smaller sub-regions. This recursive procedure can be represented 

graphically as a tree that splits into successively smaller branches, each branch 

representing a sub-region of input variable ranges. This tree is “grown” up to T0 splits, 

learning a successively detailed mapping between all the available data and the 

UPDRS. Although this process is in principle very flexible and hence able to 

reproduce highly convoluted mappings, it can easily overfit the data: that is, become 

highly sensitive to noisy fluctuations in the input data. To address this danger some 

splits are collapsed (a process known as pruning) and the amount of split reduction is 

determined by the pruning level. 

 Here we employed the following strategy: we have experimented with the Lasso 

method by adjusting the constant parameter λ, and then observed the surviving and 

shrinking coefficients associated with each dysphonia measure. Subsequently, various 

reduced sets of dysphonia measures have been tested with all the regression methods 

(LS, IRLS and CART).  

 

Model selection – Bayesian Information Criterion and Akaike Information Criterion 

 

 The Bayesian Information Criterion (BIC) and Akaike Information Criterion 

(AIC) offer a framework of comparing fits of models with a different number of 
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parameters32, and have often been used in the context of medical applications34. These 

criteria induce a penalty on the number of measures in the selected subset, offering a 

compromise between in-sample error and model complexity. The ‘optimal’ subset of 

dysphonia measures is the model with the lower BIC and AIC values. These two 

criteria are defined as32: 

( )2

2

ˆ
BIC log( )

N

i i
i

ε

U U
N D

σ

−
= +
∑

 

( )2

2

ˆ
AIC 2 /

N

i i
i

ε

U U
D N

σ

−
= +
∑

 

where N is the number of data samples, D is the number of measures, Ui is the true 

UPDRS value as provided by the dataset, ˆ
iU  the predicted estimate and 2

εσ  is the 

mean squared error (MSE) variance, where the MSE is defined as 

( )
2

1

1 ˆ
N

i i
i

MSE U U
N =

= −∑ . 

 

Cross-validation and model generalization 

 

 To objectively test the generalization performance of the proposed regression 

methods in predicting UPDRS (that is, the ability of the models to perform well on 

data not used in estimating the model parameters), we used cross validation, a well-

known statistical re-sampling technique35. Specifically, the data set of 5,923 

phonations was split into a training subset (5,331 phonations) and a testing subset 

(592 phonations), which was used to assess generalization performance. The model 

parameters were derived using the training subset, and errors were computed using 

the testing subset (out-of-sample error or testing error). The process was repeated a 
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total of 1,000 times, with the data set randomly permuted in each run prior to splitting 

in training and testing subsets, in order to obtain confidence in this assessment. On 

each test repetition, we recorded the mean absolute error (MAE) for both training and 

testing subsets:  

Q

1 ˆ
i i

i

MAE U U
N ∈

= −∑  

where Ui is the true UPDRS value as provided by the dataset, ˆ
iU  the predicted 

estimate and N is the number of phonations in the training or testing dataset, denoted 

by Q, containing the indices of that set. Testing errors from all 1,000 repetitions were 

averaged. In all cases, the prediction performance results were determined following 

cross-validation. 
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Figure Legends 

 

Fig. 1a Schematic diagram depicting the Parkinson’s disease patients’ speech 

signal recorded on the telemonitoring At-Home-Testing-Device (AHTD) in the 

patient’s home, transmitted to a dedicated server at the clinic through the 

internet, and calculation of the speech signal processing (dysphonia) 

measures, which are then input to a regression method that predicts the 

symptom score on the Unified Parkinson's Disease Rating Scale (UPDRS). 

(b) Motor Unified Parkinson's Disease Rating Scale (UPDRS) and (c) total-

UPDRS tracking over the 6-month trial period for one of the patients. The dots 

denote the piecewise linearly interpolated UPDRS value and the circles, 

predicted UPDRS. The light gray bands are the 5-95 percentile confidence 

interval of the UPDRS prediction, and the dark gray bands are the 25-75 

percentile confidence intervals. Confidence intervals are estimated using 

1,000-runs of 10-fold cross-validated out-of-sample UPDRS prediction. The 

mean absolute prediction error (MAE) of each model is also quoted, along 

with the standard deviation. The Classification And Regression Tree (CART) 

method tracks Parkinson's disease symptom progression more accurately 

than Iteratively Reweighted Least Squares (IRLS). The out-of-sample MAE 

was computed by taking the average MAE of the 1,000 runs of the cross-

validation of each testing subset (n = 592 phonations). 

 

 

Fig. 2 (a) Probability densities of the dysphonia measures applied to the 5,923 

sustained phonations. The vertical axes are the probability densities of the 
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normalized measures, estimated using kernel density estimation with 

Gaussian kernels. (b) Dysphonia measures against motor Unified Parkinson's 

Disease Rating Scale (UPDRS). The horizontal axes are the normalized 

dysphonia measures and the vertical axes correspond to motor UPDRS. The 

grey lines are the best linear fit obtained using Iteratively Reweighted Least 

Squares (IRLS - see methods section for description of the algorithm). The R-

values denote the Spearman correlation coefficient of each measure with 

motor UPDRS. See also Table 2 for the correlation coefficients between the 

measures. (c). Dysphonia measures against total Unified Parkinson's Disease 

Rating Scale (UPDRS). The horizontal axes are the normalized dysphonia 

measures and the vertical axes correspond to total UPDRS. The horizontal 

axes are the normalized dysphonia measures and the vertical axes 

correspond to total UPDRS. The grey lines are the best linear fit obtained 

using Iteratively Reweighted Least Squares (IRLS - see methods section for 

description of the algorithm). The R-values denote the Spearman correlation 

coefficient of each measure with total UPDRS. See also Table 2 for the 

correlation coefficients between the measures. All phonations were used to 

generate these results (n=5,923). 

 

Supplementary Fig. 1 (a) Typical sustained vowel phonation signal over the 

duration of phonation. The horizontal axis is time in seconds and the vertical 

axis is amplitude (no units).  (b) The same signal zoomed in. The horizontal 

axis is time in seconds and the vertical axis is amplitude (no units).   
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Supplementary Fig. 2 Selection of the optimal subset of all voice dysphonia 

measures (see Table 1) used as predictors, for Unified Parkinson's Disease 

Rating Scale (UPDRS) prediction, using the in-sample Bayesian Information 

Criterion (BIC), for Iteratively Reweighted Least Squares (IRLS) and 

Classification And Regression Tree (CART) models. The vertical axes are the 

BIC, and the horizontal axes are the subsets (see supplementary Table 1) 

found by sweeping through values of the Lasso predictor regularization 

parameter λ. Numbers in parenthesis are the number of measures in the 

subset. The label '+Jit' refers to a subset including the jitter measure, to 

distinguish subsets with the same number of measures. BIC selects the same 

subsets for the CART method for both motor UPDRS and total UPDRS, here 

the selected subset is labeled by the arrow. Although not shown here, the 

Akaike Information Criterion (AIC) selected exactly the same optimal subset of 

measures. The BIC for the smallest subset of size four, for the CART method, 

is off the scale and omitted for clarity. The in-sample error was computed by 

taking the average error of the 1,000 runs of the cross-validation of each 

training subset (n = 5,331 phonations). 

 

Supplementary Fig. 3 (a, b) Probability density of the 1,000-runs 10-fold 

cross-validation out-of-sample differences between model predicted (Û ) and 

piecewise linearly interpolated (U) Unified Parkinson's Disease Rating Scale 

(UPDRS) values, using Least Squares (LS), Iteratively Reweighted Least 

Squares (IRLS) and Classification And Regression Tree (CART) models to 

predict (a) motor-UPDRS and (b) total-UPDRS. The vertical axes are the 

probability densities of the regression methods, estimated using kernel 
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density estimation with Gaussian kernels. The mean absolute prediction error 

(MAE) of each model is also quoted, along with the standard deviation. IRLS 

outperforms the other linear regression methods, in terms of smallest MAE. 

The distribution of prediction errors for the CART method has the smallest 

spread and is also the most unimodal. The out-of-sample MAE was computed 

by taking the average MAE of the 1,000 runs of the cross-validation of each 

testing subset (n = 592 phonations). 
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Fig. 1a 

 

Fig. 1a Schematic diagram depicting the Parkinson’s disease patients’ speech 

signal recorded on the telemonitoring At-Home-Testing-Device (AHTD) in the 

patient’s home, transmitted to a dedicated server at the clinic through the 

internet, and calculation of the speech signal processing (dysphonia) 

measures, which are then input to a regression method that predicts the 

symptom score on the Unified Parkinson's Disease Rating Scale (UPDRS). 
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Fig. 1b 
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Fig. 1b Motor Unified Parkinson's Disease Rating Scale (UPDRS) tracking 

over the 6-month trial period for one of the patients. The dots denote the 

piecewise linearly interpolated UPDRS value and the circles, predicted 

UPDRS. The light gray bands are the 5-95 percentile confidence interval of 

the UPDRS prediction, and the dark gray bands are the 25-75 percentile 

confidence intervals. Confidence intervals are estimated using 1,000-runs of 

10-fold cross-validated out-of-sample UPDRS prediction. The mean absolute 

prediction error (MAE) of each model is also quoted, along with the standard 

deviation. The Classification And Regression Tree (CART) method tracks 

Parkinson's disease symptom progression more accurately than Iteratively 

Reweighted Least Squares (IRLS). The out-of-sample MAE was computed by 
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taking the average MAE of the 1,000 runs of the cross-validation of each 

testing subset (n = 592 phonations). 
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Fig. 1c 
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Fig. 1c Total Unified Parkinson's Disease Rating Scale (UPDRS) tracking over 

the 6-month trial period for one of the patients. The dots denote the piecewise 

linearly interpolated UPDRS value and the circles, predicted UPDRS. The 

light gray bands are the 5-95 percentile confidence interval of the UPDRS 

prediction, and the dark gray bands are the 25-75 percentile confidence 

intervals. Confidence intervals are estimated using 1,000-runs of 10-fold 

cross-validated out-of-sample UPDRS prediction. The mean absolute 

prediction error (MAE) of each model is also quoted, along with the standard 

deviation. The Classification And Regression Tree (CART) method tracks 

Parkinson's disease symptom progression more accurately than Iteratively 

Reweighted Least Squares (IRLS). The out-of-sample MAE was computed by 
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taking the average MAE of the 1,000 runs of the cross-validation of each 

testing subset (n = 592 phonations). 
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Fig. 2 (a) 

 

0.05
0.15

Jitter(%)

0.02

0.08

Jitter(Abs)

0.05

0.2

Jitter:RAP
0.05

0.25

Jitter:PPQ5

0.05

0.2

Jitter:DDP

0.02

0.08

Shimmer

0.02

0.06

Shimmer(dB)

0.02

0.08

Shimmer:APQ3

0.02

0.08

Shimmer:APQ5
0.02

0.1

Shimmer:APQ11

0.02

0.08

Shimmer:DDA

0.05

0.2

NHR

0 0.5 1

0.01

0.03

HNR
0 0.5 1

0.01

0.03

RPDE
0 0.5 1

5

15
x 10-3

DFA
0 0.5 1

0.01

0.03

PPE

a

 

Fig. 2a Probability densities of the dysphonia measures applied to the 5,923 

sustained phonations. The vertical axes are the probability densities of the 

normalized measures, estimated using kernel density estimation with 

Gaussian kernels. 
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Fig. 2b  

 

 

Fig. 2b Dysphonia measures against motor Unified Parkinson's Disease 

Rating Scale (UPDRS). The horizontal axes are the normalized dysphonia 

measures and the vertical axes correspond to motor UPDRS. The grey lines 

are the best linear fit obtained using Iteratively Reweighted Least Squares 

(IRLS - see methods section for description of the algorithm). The R-values 

denote the Spearman correlation coefficient of each measure with motor 

UPDRS. See also Table 2 for the correlation coefficients between the 

measures. All phonations were used to generate these results (n=5,923). 
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Fig 2c 

 

 

Fig. 2c Dysphonia measures against total Unified Parkinson's Disease Rating 

Scale (UPDRS). The horizontal axes are the normalized dysphonia measures 

and the vertical axes correspond to total UPDRS. The horizontal axes are the 

normalized dysphonia measures and the vertical axes correspond to total 

UPDRS. The grey lines are the best linear fit obtained using Iteratively 

Reweighted Least Squares (IRLS - see methods section for description of the 

algorithm). The R-values denote the Spearman correlation coefficient of each 

measure with total UPDRS. See also Table 2 for the correlation coefficients 

between the measures. All phonations were used to generate these results 

(n=5,923). 
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Supplementary Fig. 1a 

 

 

Supplementary Fig. 1 (a) Typical sustained vowel phonation signal over the 

duration of phonation. The horizontal axis is time in seconds and the vertical 

axis is amplitude (no units).   
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Supplementary Fig. 1b 

 

 

Supplementary Fig. 1 (b) The same signal zoomed in. The horizontal axis is 

time in seconds and the vertical axis is amplitude (no units).   
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Supplementary Fig. 2 
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Supplementary Fig. 2 Selection of the optimal subset of all voice dysphonia 

measures (see Table 1) used as predictors, for Unified Parkinson's Disease 

Rating Scale (UPDRS) prediction, using the in-sample Bayesian Information 

Criterion (BIC), for Iteratively Reweighted Least Squares (IRLS) and 

Classification And Regression Tree (CART) models. The vertical axes are the 

BIC, and the horizontal axes are the subsets (see supplementary Table 1) 

found by sweeping through values of the Lasso predictor regularization 

parameter λ. Numbers in parenthesis are the number of measures in the 

subset. The label '+Jit' refers to a subset including the jitter measure, to 

distinguish subsets with the same number of measures. BIC selects the same 

subsets for the CART method for both motor UPDRS and total UPDRS, here 

the selected subset is labeled by the arrow. Although not shown here, the 
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Akaike Information Criterion (AIC) selected exactly the same optimal subset of 

measures. The BIC for the smallest subset of size four, for the CART method, 

is off the scale and omitted for clarity. The in-sample error was computed by 

taking the average error of the 1,000 runs of the cross-validation of each 

training subset (n = 5,331 phonations). 
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Supplementary Fig. 3a 

 

 

 

Supplementary Fig. 3a Probability density of the 1,000-runs 10-fold cross-

validation out-of-sample differences between model predicted (Û ) and 

piecewise linearly interpolated (U) Unified Parkinson's Disease Rating Scale 

(UPDRS) values, using Least Squares (LS), Iteratively Reweighted Least 

Squares (IRLS) and Classification And Regression Tree (CART) models to 

predict motor-UPDRS. The vertical axes are the probability densities of the 

regression methods, estimated using kernel density estimation with Gaussian 

kernels. The mean absolute prediction error (MAE) of each model is also 

quoted, along with the standard deviation. IRLS outperforms the other linear 

regression methods, in terms of smallest MAE. The distribution of prediction 

errors for the CART method has the smallest spread and is also the most 

unimodal. The out-of-sample MAE was computed by taking the average MAE 
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of the 1,000 runs of the cross-validation of each testing subset (n = 592 

phonations). 
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Supplementary Fig. 3b 

 

 

 

Supplementary Fig. 3b Probability density of the 1,000-runs 10-fold cross-

validation out-of-sample differences between model predicted (Û ) and 

piecewise linearly interpolated (U) Unified Parkinson's Disease Rating Scale 

(UPDRS) values, using Least Squares (LS), Iteratively Reweighted Least 

Squares (IRLS) and Classification And Regression Tree (CART) models to 

predict total-UPDRS. The vertical axes are the probability densities of the 

regression methods, estimated using kernel density estimation with Gaussian 

kernels. The mean absolute prediction error (MAE) of each model is also 

quoted, along with the standard deviation. IRLS outperforms the other linear 

regression methods, in terms of smallest MAE. The distribution of prediction 

errors for the CART method has the smallest spread and is also the most 

unimodal. The out-of-sample MAE was computed by taking the average MAE 
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of the 1,000 runs of the cross-validation of each testing subset (n = 592 

phonations). 
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Table Legends 

 

Table 1: Classical and non-classical dysphonia measures applied to 

sustained vowel phonations, and their Unified Parkinson's Disease 

Rating Scale (UPDRS) correlations.  

KP-MDVP stands for Kay Pentax Multidimensional Voice Program. Classical measures were 

obtained using the Praat software package. The Unified Parkinson's Disease Rating Scale 

(UPDRS) correlation columns are the Spearman non-parametric correlation coefficient 

between each measure and piecewise linearly interpolated motor and total UPDRS. All 

measures were statistically significantly correlated (p < 0.0001) with UPDRS. All speech 

signals were used to generate these results (n = 5,923 phonations). 

 

Table 2: Correlation coefficients between dysphonia measures.  
 
The correlation columns are the Spearman non-parametric correlation coefficients ρ between 

two measures. All measures were statistically significantly correlated (p < 0.0001). Bold italic 

entries indicate high correlation between measures  (Spearman ρ ≥ 0.95). All speech signals 

were used to generate these results (n = 5,923 phonations). 

 

Table 3: Regression coefficients of the three linear methods (LS, IRLS, 

Lasso, see text) for all dysphonia measures and piecewise linearly 

interpolated motor and total Unified Parkinson's Disease Rating Scale 

(UPDRS). 

The coefficients in this table are indicative (derived over one run of cross-validation with the 

training subset, n = 5,331). We have noticed considerably different values in the 1,000 runs of 

10-fold cross validation. However, the fact that the cross-validated test error and test error 

standard deviation remained small, suggests that confidence can be assumed for the above 

coefficient values. 
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Supplementary Table 1: Subsets of dysphonia measures and out-of-

sample MAE for the Iteratively Reweighted Least Squares (IRLS) and the 

Classification And Regression Tree (CART) method. 

The particular subsets above were dictated by sweeping the regularization parameter λ in the 

Least Absolute Shrinkage and Selection Operator (Lasso) prediction model. The numbers in 

parenthesis denote the chosen pruning level of the CART method that minimizes the MAE, 

and ± denotes one standard deviation around the quoted MAE. The bold subset is the optimal 

subset, minimizing the Bayesian Information Criterion. The out-of-sample MAE was computed 

by taking the average MAE of the 1,000 runs of the cross-validation of each testing subset (n 

= 592 phonations). 
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TABLE 1 
 
 
Table 1: Classical and non-classical dysphonia measures applied to 
sustained vowel phonations, and their Unified Parkinson's Disease 
Rating Scale (UPDRS) correlations.  

Measure Description 
Motor 

UPDRS 
correlation 

Total 
UPDRS 

correlation
MDVP: 
Jitter(%) KP-MDVP jitter as a percentage 0.124 0.125 

MDVP: 
Jitter(Abs) KP-MDVP absolute jitter in microseconds 0.072 0.103 

MDVP:RAP KP-MDVP Relative Amplitude Perturbation 0.105 0.107 

MDVP:PPQ KP-MDVP five-point Period Perturbation 
Quotient 0.120 0.117 

Jitter:DDP Average absolute difference of differences 
between cycles, divided by the average period 0.105 0.107 

MDVP: 
Shimmer KP-MDVP local shimmer 0.138 0.139 

MDVP: 
Shimmer(dB) KP-MDVP local shimmer in decibels 0.139 0.139 

Shimmer: 
APQ3 Three point Amplitude Perturbation Quotient 0.116 0.122 

Shimmer: 
APQ5 Five point Amplitude Perturbation Quotient 0.123 0.127 

MDVP:APQ KP-MDVP 11-point Amplitude  Perturbation 
Quotient 0.166 0.163 

Shimmer: 
DDA 

Average absolute difference between 
consecutive differences between the 
amplitudes of consecutive periods 

0.116 0.122 

NHR Noise-to-Harmonics Ratio 0.131 0.139 

HNR Harmonics-to-Noise Ratio -0.159 -0.163 

RPDE Recurrence Period Density Entropy 0.112 0.143 

DFA Detrended Fluctuation Analysis -0.131 -0.141 

PPE Pitch Period Entropy 0.160 0.152 

KP-MDVP stands for Kay Pentax Multidimensional Voice Program. Classical measures were 
obtained using the Praat software package. The Unified Parkinson's Disease Rating Scale 
(UPDRS) correlation columns are the Spearman non-parametric correlation coefficient 
between each measure and piecewise linearly interpolated motor and total UPDRS. All 
measures were statistically significantly correlated (p < 0.0001) with motor-UPDRS and total-
UPDRS. All speech signals were used to generate these results (n = 5,923 phonations). 
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Table 2: Correlation coefficients between dysphonia measures.  
 MDVP 

Jitter 
(%) 

MDVP 
Jitter 
(Abs) 

MDVP
RAP 

MDVP: 
PPQ 

Jitter: 
DDP 

MDVP: 
Shimm

er 

MDVP: 
Shimm

er 
(dB)

Shimm
er 

APQ3 

Shimm
er 

APQ5 

MDVP:
APQ 

Shimm
er 

DDA 

NHR HNR RPD
E 

DFA 

MDVP: 
Jitter 
(Abs) 

0.90               

MDVP:R
AP 
 

0.96 0.82              

MDVP: 
PPQ 0.96 0.89 0.95             

Jitter: 
DDP 0.96 0.82 1 0.95            

MDVP: 
Shimmer 0.65 0.63 0.65 0.69 0.65           

MDVP: 
Shimmer 
(dB) 

0.68 0.64 0.66 0.70 0.66 0.99          

Shimmer 
APQ3 0.62 0.58 0.63 0.66 0.63 0.98 0.96         

Shimmer 
APQ5 0.62 0.61 0.62 0.67 0.62 0.99 0.97 0.98        

MDVP:A
PQ 
 

0.63 0.64 0.60 0.67 0.60 0.96 0.95 0.91 0.96       

Shimmer 
DDA 0.62 0.58 0.63 0.66 0.63 0.98 0.96 1 0.98 0.91      

NHR 
 0.80 0.75 0.75 0.75 0.75 0.65 0.69 0.62 0.62 0.62 0.62     

HNR 
 -0.76 -0.76 -0.73 -0.79 -0.73 -0.80 -0.78 -0.78 -0.79 -0.79 -0.78 -0.76    

RPDE 
 0.53 0.64 0.45 0.51 0.45 0.48 0.47 0.43 0.46 0.50 0.43 0.61 -0.65   
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DFA 
 0.44 0.50 0.43 0.48 0.43 0.29 0.27 0.26 0.29 0.31 0.26 0.15 -0.36 0.19  

PPE 
 0.85 0.81 0.77 0.84 0.77 0.64 0.66 0.59 0.62 0.66 0.59 0.73 -0.75 0.55 0.42 

The correlation columns are the Spearman non-parametric correlation coefficients ρ between two measures. All measures were statistically significantly 
correlated (p < 0.0001). Bold italic entries indicate high correlation between measures  (Spearman ρ ≥ 0.95). All speech signals were used to generate these 
results (n = 5,923 phonations). 
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TABLE 3 

Table 3: Regression coefficients of the three linear methods (LS, IRLS, 
Lasso, see text) for all dysphonia measures and piecewise linearly 
interpolated motor and total Unified Parkinson's Disease Rating Scale 
(UPDRS). 

Measure 

Motor 
UPDRS 
Least 

squares 
 coefficients 

Motor 
UPDRS 

Iteratively 
re-weighted 

least 
squares 

coefficients 

Motor 
UPDRS 
Lasso 

coefficients 
(λ=1) 

Total 
UPDRS 
Least 

squares 
 coefficients 

Total 
UPDRS 

Iteratively 
re-weighted 

least 
squares 

coefficients 

Total 
UPDRS 
Lasso 

coefficients 
(λ=1) 

MDVP: 
Jitter (%) 
 

-87.63 -183.28 -214.45 -768.96 -649.19 -537.90 

MDVP: 
Jitter 
(Abs) 
 

-6.87·104 -7.64·104 0 -7.04·104 -8.49·104 0 

MDVP: 
RAP 
 

-6.02·104 -6.29·104 0 -2.91·104 -3.36·104 0 

MDVP: 
PPQ 
 

-238.07 -62.70 0 209.26 40.02 50.62 

 
Jitter: 
DDP 
 

2.02·104 2.12·104 75.59 1.02·104 1.17·104 241.81 

MDVP: 
Shimmer 
 

77.78 100.56 23.81 28.62 114.26 9.58 

MDVP: 
Shimmer 
(dB) 

0.31 -2.49 4.37 -0.38 -4.74 1.67 

Shimmer: 
APQ3 
 

-1.85·104 -2.43·104 0 -8.19·104 -7.24·104 0 

Shimmer: 
APQ5 
 

-108.01 -126.06 -66.68 -93.05 -138.32 -2.75 

MDVP: 
APQ 
 

55.12 83.35 66.28 104.35 107.95 85.74 

Shimmer:
DDA 
 

6.16·103 8.09·103 -4.97 2.73·104 2.41·104 0 

NHR 
 
 

2.14 -5.04 -7.38 -12.45 -8.21 -17.33 

 
HNR 
 

0.52 0.57 0.61 0.65 0.74 0.74 

RPDE 
 
 

16.62 20.24 15.25 26.21 30.77 23.81 
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DFA 
 
 

-9.54 -15.43 -12.05 -12.47 -19.73 -14.05 

PPE 
 
 

35.34 37.90 28.50 41.37 39.15 33.41 

The coefficients in this table are indicative (derived over one run of cross-validation with the 
training subset, n = 5,331). We have noticed considerably different values in the 1,000 runs of 
10-fold cross validation. However, the fact that the cross-validated test error and test error 
standard deviation remained small, suggests that confidence can be assumed for the above 
coefficient values. 
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Supplementary Table 1: Subsets of dysphonia measures and out-of-
sample Mean Absolute Error (MAE) for the Iteratively Reweighted Least 
Squares (IRLS) and the Classification And Regression Tree (CART) 
method. 

Number 
of 

measures 
Measures used 

Testing 
MAE  
Motor 

UPDRS 
IRLS 

Testing 
MAE  
Total 

UPDRS 
IRLS 

Testing 
MAE  
Motor 

UPDRS 
CART 

Testing 
MAE  
Total 

UPDRS 
CART 

16 

MDVP:Jitter (%), 
MDVP:Jitter(Abs), MDVP: 
RAP, MDVP:PPQ,  Jitter:DDP 
MDVP:Shimmer, 
MDVP:Shimmer (dB), 
Shimmer:APQ3,Shimmer:APQ
5, MDVP:APQ, Shimmer:DDA, 
NHR, HNR 
RPDE, DFA, PPE 

6.71±0.18 8.46±0.27 5.77±0.20 
(830) 

7.45±0.27 
(850) 

13 

MDVP:Jitter (%), MDVP:PPQ,  
Jitter:DDP MDVP:Shimmer, 
MDVP:Shimmer (dB), 
Shimmer:APQ5, MDVP:APQ, 
Shimmer:DDA, NHR, HNR 
RPDE, DFA, PPE 

6.73±0.17 8.49±0.25 6.01±0.26 
(800) 

7.64±0.29 
(800) 

11 

MDVP:Jitter(%),MDVP:Shimm
er, MDVP:Shimmer(dB), 
Shimmer:APQ5, MDVP:APQ, 
Shimmer:DDA, NHR, HNR 
RPDE, DFA, PPE 

6.74±0.16 8.83±0.26 6.06±0.25 
(850) 

7.67±0.27 
(800) 

6 MDVP: Shimmer(dB), NHR, 
HNR, RPDE, DFA, PPE 6.91±0.17 8.60±0.30 6.08±0.19 

(780) 
7.75±0.26 

(750) 

6 
MDVP:Jitter(Abs), 
MDVP:Shimmer,  NHR, HNR, 
DFA, PPE 

6.80±0.17 8.47±0.27 5.95±0.19 
(780) 

7.52±0.25 
(780) 

5 
MDVP:Jitter(Abs), 
MDVP:Shimmer, HNR, DFA, 
PPE 

6.88±0.17 8.71±0.26 5.96±0.19 
(750) 

7.59±0.25 
(780) 

5 MDVP:Shimmer(dB), HNR, 
RPDE, DFA, PPE 6.79±0.17 8.49±0.26 6.14±0.19 

(780) 
7.72±0.26 

(780) 

4 MDVP:Shimmer(dB), HNR, 
RPDE, PPE 6.91±0.17 8.57±0.26 6.82±0.23 

(700) 
8.43±0.28 

(700) 

The particular subsets above were dictated by sweeping the regularization parameter λ in the 
Least Absolute Shrinkage and Selection Operator (Lasso) prediction model. The numbers in 
parenthesis denote the chosen pruning level of the CART method that minimizes the MAE, 
and ± denotes one standard deviation around the quoted MAE. The bold subset is the optimal 
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subset, minimizing the Bayesian Information Criterion. The out-of-sample MAE was computed 
by taking the average MAE of the 1,000 runs of the cross-validation of each testing subset (n 
= 592 phonations). 


